يمكن تشبيه الشبكات اللاسلكية بشبكات الهاتف المحمول فالمستخدم يستطيع التنقل إلى أي مكان يحلو له و يبقى مع ذلك متصلا بشبكته ما دام يقع في المدى الذي تغطيه الشبكة.


قد يكون مصطلح لاسلكي غير دقيق نوعا ما فأغلب الشبكات لا تكون لاسلكية تماما ، ففي أغلب الأحيان تكون هذه الشبكات عبارة عن خليط من الأجهزة الموصلة بأسلاك و أجهزة أخرى موصلة لاسلكيا، هذا النوع من الشبكات يطلق عليها شبكات هجينة Hybrid.




بدأت الشبكات المحلية اللاسلكية Wireless LAN تشكل خيارا فعالا للتشبيك في الآونة الأخيرة، و السبب في ذلك يتلخص في:



1- التطورات المتلاحقة في التقنيات و المنتجات اللاسلكية. 2- الانخفاض المتواصل في الأسعار ، نظرا للتنافس المتزايد بين المصنعين. 3- الطلب المتزايد على هذه الشبكات بسبب الحرية الكبيرة التي توفرها للمستخدمين في التنقل دون أن يؤثر ذلك على عملهم.



تستطيع المكونات اللاسلكية أداء المهام التالية:





1- توفير اتصالات مؤقتة لشبكات سلكية في حال فشل هذه الأسلاك بتوفير الاتصال المطلوب لأي سبب كان. 2- المساعدة في عمل نسخة احتياطية من البيانات على شبكة سلكية إلى جهاز متصل لاسلكيا. 3- توفير درجة من الحرية في التنقل لبعض المستخدمين في شبكة سلكية. تعتبر الشبكات اللاسلكية مفيدة في الحالات التالية:





محطة العمل اللاسلكية تبدو و تعمل بشكل مشابه للمحطات السلكية و الاختلاف الوحيد يتمثل في وسط الإرسال المستخدم.
كل جهاز في الشبكات اللاسلكية يحتوي على بطاقة شبكة لاسلكية مع مرسل مستقبل Transceiver لاسلكي.
يقوم Transceiver بإذاعة و استقبال الإشارات من و إلى أجهزة الكمبيوتر المحيطة به.
أما في الشبكات الهجينة فإن Transceiver يسمح للأجهزة اللاسلكية بالاتصال مع الأجهزة المكونة للشبكة السلكية.
1- توفير اتصالات في الأماكن المزدحمة. 2- توفير اتصالات للمستخدمين كثيري التنقل. 3- بناء شبكات في الأماكن المعزولة التي يصعب توصيلها بأسلاك.

هناك ثلاث تقنيات أساسية تستخدم في إرسال البيانات في الشبكات اللاسلكية المحلية:


2- موجات راديو الطيف الانتشاري spread-spectrum radio. 1- موجات الراديو أحادية التردد single-frequency radio و تسمى أحيانا موجات الراديو عالية التردد ضيقة النطاق Narrow-Band High-Frequency Radio.

3- موجات الأشعة تحت الحمراء infrared.
يعمل الاتصال الراديوي في شبكات الكمبيوتر بشكل مشابه لما هو عليه في شبكات الإذاعة ، فالجهاز المرسل يقوم بإرسال إشاراته باستخدام تردد معين و يقوم الجهاز المستقبل بضبط تردده ليتوافق مع تردد الجهاز المرسل لكي يتمكن من استقبال الإشارات.

الاختلاف الوحيد بين شبكات الكمبيوتر الراديوية و شبكات الإذاعة هو أن الشبكات الراديوية تقوم بإرسال البيانات و ليس الرسائل الصوتية كما في شبكات الإذاعة.

يعمل Transceiver أحادي التردد كما يظهر من اسمه باستخدام تردد واحد فقط.

تستطيع أنظمة الراديو أحادي التردد single-frequency radio العمل باستخدام أي تردد ينتمي إلى مدى الترددات الراديوية Radio Frequency (RF) Range، و بشكل عام تستخدم شبكات الكمبيوتر المدى العالي من طيف الترددات الراديوية و التي تقاس بالجيجاهيرتز، وذلك لأنها توفر معدلات إرسال أعلى للبيانات.


بشكل عام فإن أنظمة الإرسال الراديوي سهلة التركيب و الإعداد ، و لكن استخدام أنظمة عالية الطاقة لتغطية مساحات كبيرة يعتبر أكثر تعقيدا لأنها تستخدم أجهزة عالية الجهد و تحتاج إلى صيانة مستمرة و أيدي عاملة خبيرة.


الإعداد السيئ لأجهزة التردد الأحادي قد يؤدي إلى:




1- إشارات مزيفة. 2- استخدام ضعيف لقوة الإرسال. 3- معدلات إرسال بيانات منخفض.
يعتمد التوهين في الإشارات الراديوية على تردد و قوة الإشارة المرسلة، فكلما ارتفع التردد و قوة الإشارة كلما أصبح التوهين أضعف.
و حيث أن أجهزة الراديو ذات التردد الأحادي رخيصة الثمن تعمل باستخدام تردد منخفض و قوة محدودة فإنها عادة تعاني من معدلات توهين عالية، و لهذا فإنها لا تستطيع تغطية مساحة كبيرة و لا تستطيع المرور خلال الأجسام الكثيفة و المصمتة.
بشكل عام تعتبر أجهزة الراديو أحادي التردد أقل تكلفة من غيرها من الوسائط اللاسلكية و تعمل بترددات أكثر انخفاضا و لا تتجاوز قوة الإشارة أكثر من وات واحد.
تتراوح سرعة نقل البيانات في الشبكات الراديوية أحادية التردد بين 1 ميجابت في الثانية و 10 ميجابت في الثانية.
تعتبر إشارات الراديو أحادي التردد عرضة للتداخل الكهرومغناطيسي و خاصة في مدى التردد المنخفض و الذي يتداخل مع موجات أجهزة المستهلكين مثل أجهزة فتح أبواب مرآب السيارات.
اعتراض الإشارات و التجسس عليها في هذه الأنظمة أمر غاية في السهولة إذا عرف تردد الإرسال.
أما شبكات راديو الطيف الانتشاري أو متعدد التردد spread-spectrum radio فهي تعتبر التقنية الأكثر استخداما في الشبكات اللاسلكية، و قد طورت هذه التقنية أول مرة من قبل الجيش الأمريكي خلال الحرب العالمية الثانية لمنع عمليات التجسس على الإرسال الراديوي.

تستخدم شبكات راديو الطيف الانتشاري عدة ترددات معا لنقل الإشارة مما يقلل من المشاكل المتعلقة بالإرسال أحادي التردد.


هناك تقنيتان أساسيتان تستخدمان في شبكات راديو الطيف الانتشاري هما:


2- القفزات الترددية Frequency Hopping. 1- التتابع المباشر Direct Sequence Modulation.


تعتبر تقنية التتابع المباشر أكثر استخداما من التقنية الأخرى.

تقوم تقنية التتابع المباشر بإرسال بياناتها المشفرة عبر مجموعة من ترددات الراديو في نفس الوقت و تقوم أيضا بإضافة بتات من البيانات المزورة التي ليس لها أي فائدة سوى تضليل الأجهزة المستقبلة غير المرخص لها باستقبال هذه البيانات ، يطلق على هذه البتات المزورة اسم chips.
يعرف الجهاز المرخص له بالاستقبال مسبقا الترددات التي ستحتوي على بيانات صالحة فيقوم بجمع هذه البيانات و استبعاد الإشارات غير الصالحة.

أما في تقنية القفزات الترددية Frequency Hopping فإن الإشارات تنتقل بسرعة من تردد إلى آخر ، و يكون هناك تفاهم مسبق بين الجهاز المرسل والجهاز المستقبل على استخدام نموذج معين في تنظيم القفزات بين الترددات المختلفة و الفترات الزمنية التي تفصل بين كل قفزة و أخرى.


يتبع كل مصنع أو منتج نموذجه الخاص في الخوارزمية المتبعة في القفزات الترددية التي يستخدمها الجهازين المرسل و المستقبل.

تعتبر سعة نطاق البث في تقنية القفزات الترددية أكبر منها في تقنية التتابع المباشر و ذلك نتيجة لأن كل الترددات في النطاق تكون متاحة للاستخدام من قبل تقنية القفزات الترددية بعكس تقنية التتابع المباشر التي تستخدم مجموعة من الترددات و لكن ليس كلها.
تعتبر أنظمة الطيف الانتشاري معتدلة التكلفة نسبيا و ذلك وفقا للأجهزة المستخدمة.
تتراوح سرعة نقل البيانات في هذا النظام ما بين 2 و 6 ميجابت في الثانية و لكن مع استخدام طاقة أكبر و نطاق أعلى من التردد من الممكن الحصول على سرعات أكبر بكثير.
و لكن نظرا لاستخدام طاقة منخفضة للإرسال في الشبكات متواضعة التكاليف فإنها تكون عرضة للتوهين، أما بالنسبة للتداخل الكهرومغناطيسي فنلاحظ أن نظام راديو الطيف الانتشاري يعتبر أكثر مناعة ضد هذا التداخل من الأنظمة الأخرى ، و ممكن توضيح ذلك بأن الإشارات يتم بثها عبر ترددات مختلفة و بالتالي فإن أي تداخل قد يتم مع أحد هذه الترددات دون غيرها مما لا يؤثر على الإشارة ككل و التي تكون موزعة على ترددات مختلفة مع ملاحظة أنه مع زيادة معدل نقل البيانات عبر الترددات المختلفة يزداد معدل التداخل نظرا لزيادة معدل استخدام الترددات المعرضة للتداخل في وقت معين.

اعتراض إشارات راديو الطيف الانتشاري ممكن و لكن التجسس على هذه الإشارات فشبه مستحيل و خاصة أن المتجسس لا يعرف الترددات المختلفة المستخدمة في الإرسال و لا يعرف التفريق بين البيانات الصالحة و الغير صالحة.

تستخدم بعض الشبكات اللاسلكية الضوء لنقل البيانات و هي نوعان: 1- شبكات الأشعة تحت الحمراء.

ترسل البيانات باستخدام ديود باث للضوء Light Emitting (Diode (LED أو ديود قاذف لليزر Injection Laser Diode (ILD) .
إشارات الأشعة تحت الحمراء لا تستطيع اختراق الجدران أو الأجسام الصلبة كما أنها تضعف إذا تعرضت لإضاءة شديدة.
إذا انعكست إشارات الأشعة تحت الحمراء عن الجدران فإنها تخسر نصف طاقتها مع كل انعكاس، و نظرا لمداها و ثباتها المحدود فإنها تستخدم عادة في الشبكات المحلية الصغيرة.
يتراوح المدى الترددي الذي تعمل فيه الأشعة تحت الحمراء ما بين 100 جيجا هرتز و 300 تيراهرتز.
2- شبكات الليزر و هي توفر سرعات عالية جدا لكن تكلفتها مرتفعة جدا أيضا.
نظريا تستطيع الأشعة تحت الحمراء توفير سرعات إرسال عالية و لكن عمليا فإن السرعة الفعلية التي تستطيع أجهزة الإرسال بالأشعة تحت الحمراء أقل من ذلك بكثير.
تعتمد تكلفة أجهزة الأشعة تحت الحمراء على المواد المستخدمة في تنقية و ترشيح الأشعة الضوئية.

تستخدم شبكات الإرسال باستخدام الأشعة تحت الحمراء تقنيتان هما:


2- إرسال منتشر أو إذاعي Broadcast. 1- نقطة إلى نقطة Point to Point.

3- الإرسال العاكس Reflective.

تتطلب تقنية نقطة إلى نقطة خطا مباشرا يسمح لكل من الجهاز المرسل و المستقبل رؤية أحدهما الآخر لهذا يتم تصويبهما بدقة ليواجه كل منهما الآخر ، فإذا لم يتوفر خط مباشر بين الجهازين فسيفشل الاتصال .

مثال على هذه التقنية هو جهاز التحكم بالتلفاز.و نظرا للحاجة إلى التصويب الدقيق للأجهزة فإن تركيب هذه الأنظمة فيه صعوبة.
تتراوح سرعة نقل البيانات باستخدام هذه التقنية بين بضع كيلوبتات في الثانية و قد تصل إلى 16 ميجابت في الثانية على مدى كيلومتر واحد.
يعتمد مقدار التوهين في إشارات الأشعة تحت الحمراء على كثافة و وضوح الأشعة المبثوثة كما يعتمد على الظروف المناخية و العقبات في طريق الأشعة، و كلما كانت الأشعة مصوبة بشكل أدق كلما قل مستوى التوهين كما أنه يصبح من الصعب اعتراض الأشعة أو التجسس عليها.

أما تقنية الإرسال المنتشر فإن الأشعة يتم نشرها على مساحة واسعة و يطلق على شبكات الإرسال المنتشر أحيانا شبكات الأشعة تحت الحمراء المبعثرة Scatter Infrared Networks.

واحدا يستطيع الاتصال مع أكثر من جهاز في وقت واحد و هذا الأمر يعتبر ميزة من ناحية و عيب من ناحية أخرى حيث أنه يسمح لاعتراض الإشارة و التجسس عليها.
و نجد أن سرعة نقل البيانات في هذه التقنية أقل منها في التقنية السابقة فهي لا تتجاوز 1 ميجابت في الثانية و مرشحة للزيادة في المستقبل، ولكن في المقابل فإن إعدادها أسرع و أسهل و أكثر مرونة، و هي أيضا تتأثر سلبا بالضوء المباشر و بالعوامل الجوية، و لا يتجاوز المدى الذي تغطيه هذه التقنية إذا كانت طاقتها ضعيفة بضع عشرات من الأمتار.

أما النوع الثالث و هو العاكس Reflective فهو عبارة عن دمج للنوعين السابقين ، و فيه يقوم كل جهاز بالإرسال نحو نقطة معينة و في هذه النقطة يوجد Transceiver يقوم بإعادة إرسال الإشارة إلى الجهاز المطلوب.